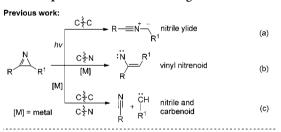


Visible-Light Photoredox Catalyzed Three-Component Cyclization of 2H-Azirines, Alkynyl Bromides, and Molecular Oxygen to Oxazole Skeleton


Lili Chen, Hongji Li, *, † Pinhua Li, † and Lei Wang*, †, ‡

Supporting Information

ABSTRACT: A novel three-component cyclization of 2Hazirines, alkynyl bromides, and molecular oxygen under visiblelight photoredox catalysis at room temperature has been developed, which provides a direct approach to a wide range of substituted oxazoles in moderate to good yields.

he unique 2H-azirines with highly strained threemembered N-heterocyclic motifs are known as reactive intermediates in organic synthesis.1 Although 2H-azirines featured a C=N bond embedded in a highly strained threemembered cycle, they are stable enough to be isolated and stored for a long while. As a consequence, a variety of organic transformations concerning 2H-azirines have been reported.2 Generally, the ring-opening of 2H-azirines underwent three possible bond cleavage models to release intermolecular strain. For instance, the direct C-C bond cleavage in 2H-azirines to generate nitrile ylides under light irradiation (Scheme 1a);³ the

Scheme 1. Representative Bond Cleavage of 2H-Azirines

This work: Novel example of C-N cleavage of azirine and three-component cyclization of O2 participation by photoredox catalysis

$$Ar \xrightarrow{\text{Mist}^{r}} + Br \xrightarrow{\text{Ar}^{1}} Ar^{1} \xrightarrow{\text{acridinium salt}} Ar^{1} \xrightarrow{\text{Visible light, O}_{2}, \text{rt}} Ar^{1} \text{ (d)}$$

C-N bond cleavage in 2H-azirines by transition-metal catalysis to form vinyl nitrenoid intermediates (Scheme 1b); 4-6 and the simultaneous cleavage of both C-C and C-N bonds generates carbenoid species and nitriles (Scheme 1c). Recently, 2Hazirines have been used for the synthesis of N-containing compounds.8 In particular, 2H-azirines bearing an aryl group at the C-3 position are attractive because of their unique activity. Although many advances have been made on azirine chemistry in

the last decades, development of mild and green chemical transformations of azirines is highly desirable.

Most recently, visible-light-induced photoredox catalysis has offered a valuable strategy for organic transformations, 9,10 and a number of elegant works have been reported by MacMillan, ^{9a,b} Yoon, ^{9c} Sanford, ^{9d} Glorious, ^{9e} Stephenson, ^{9f} Nicewicz, ^{10a-e} Xiao, ^{10f,g} and others. ^{10h-l} This rapidly expanding field has enabled the invention of a series of bond formations, which are impossible to be constructed previously via the classic methods.

It is well-known that molecular oxygen is always considered an atom-economical, environmentally benign, and abundant source. 11 In general, oxygen acts as a sink for electrons coming from catalysts, and which also can be incorporated into the products. More often, exploring the novel synthesis of oxygencontaining compounds via molecular oxygen incorporation is much more practical and valuable. To our knowledge, few reports exist referring to aerobic chemical process in the presence of photoredox catalyst, 10k,1 but less on molecular oxygen incorporation. Based on these understandings and our recent works on photochemistry, 12 we herein first report an O2participated three-component cyclization of 3-aryl-2H-azirines with 1-aryl-2-bromoacetylenes in the presence of acridinium salt as a photoredox catalyst under visible light irradiation at room temperature (Scheme 1d). The photoredox-catalyzed C-N bond cleavage of azirines and incorporation of oxygen atom into oxazoles from O2 proceed smoothly under mild and energyefficient conditions.

On the basis of recognizing photoredox catalysis, we set out to test the model reaction of 3-phenyl-2H-azirine (1a) with 1phenyl-2-bromoacetylene (2a) using organic dye as photoredox catalyst under visible light irradiation in air at room temperature, as shown in Table 1. Initially, we found that green LED was capable of enabling the cycloaddition of 1a with 2a in CH3CN under 9-phenyl-10-methylacridinium perchlorate catalysis (PC-

Received: June 11, 2016 Published: July 26, 2016

[†]Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China

[‡]State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P.R. China

Organic Letters Letter

Table 1. Optimization of the Reaction Conditions

e	ntry	light s	source	additive	yield (%) ^b
	1	green LE	D		7
	2	white LE	D		n.r.
	3	blue LED	(1.5 W)		62
	4	blue LED	0 (3 W)		64
	5	blue LED	0 (6 W)		25
	6	blue LED	(1.5 W)	PhSSPh	46
	7	blue LED	(1.5 W)	TBHP	24
	8	blue LED	(1.5 W)	Et ₃ N	n.r.
	9	blue LED	(1.5 W)	PivOH	43
	10 blue LED (1.5 W) 11 blue LED (1.5 W)				77 ^c , 76 ^{c,d}
					n.r. ^e
	12				n.r.
an			(0.40 1) •	(0.00	1) DG T (T 0

^aReaction conditions: **1a** (0.40 mmol), **2a** (0.20 mmol), PC-I (5.0 mol %), CH₃CN (1.0 mL) under air atmosphere with light irradiation for 24 h. ^bIsolated yield. ^cCH₃CN/DCE (V/V = 1:1, 1.0 mL), ^dO₂ atmosphere (balloon). ^eIn absence of PC-I. n.r. = no reaction.

I), albeit with the formation of product 3a in 7% yield (entry 1). Single crystal X-ray diffraction further confirmed the structure of oxazole backbone (Supporting Information for detail). Subsequently, screening of light source indicated that white LED did not promote the model reaction (entry 2). To our delight, employing blue LED (1.5 W) irradiation for 24 h on the reaction generated 3a in 62% yield (entry 3). The power of blue LED was examined, and 3 and 6 W blue LED provided the desired product 3a in 64 and 25% yields, respectively (entries 4 and 5). Addition of additives, such as PhSSPh, tert-butyl hydroperoxide (TBHP), NEt₃, and PivOH, resulted in lower yields of 3a (entries 6–9). Furthermore, improved yield of 3a was achieved by using mixed solvent of CH₃CN/DCE in equal volume (entry 10), and comparable result was obtained when carried out in O₂ (entry 10). As expected, no reaction occurred in the absence of PC-I or light irradiation (entries 11 and 12). Inferior results were obtained when the other solvents, such as DCE, DMF, MeOH, and THF, were investigated under the similar conditions (SI, Table S1, entries 1-4). Further, the screening of some organic dyes as photocatalysts demonstrated that PC-I was an optimal photocatalyst among the examined acridinium salts, and the results are also summarized in Table S1 (entries 5–11).

Based on the optimal reaction conditions, we turned our attention to investigate the scope of the substrates. First, the scope of alkynyl bromides in the reaction was examined, as described in Scheme 2. The visible-light-induced cyclization of 3phenyl-2H-azirine (1a) with an array of 1-aryl-2-bromoacetylenes smoothly underwent optimal conditions to generate the corresponding substituted oxazoles as desired products. Obviously, the aryl substituents of 2 bearing both electronwithdrawing and electron-donating groups on the para-position of the benzene rings exhibited good tolerance. For example, paramethyl, para-ethyl, para-(iso)propyl, para-butyl, para-(tert)butyl, and para-methoxyl substituted phenyl-2-bromoacetylenes reacted with 1a to afford the corresponding products (3b-g) in 69-80% yields. The reactions also proceeded well when the reactions of 1a with 1-aryl-2-bromoacetylenes with F, Cl, Br, and CF₃ at para- or meta-position of the phenyl rings were performed under the standard reaction conditions, providing the desired

Scheme 2. Scope of Alkynyl Bromides

"Reaction conditions: 1a (0.40 mmol), 2 (0.20 mmol), PC-I (5.0 mol %), CH₃CN/DCE (V/V = 1:1, 1.0 mL), room temperature, air, 1.5 W blue LED for 24 h. b Isolated yield.

products (3h-m) in 57–67% yields. An obvious steric effect was observed when 1-(ortho-methyl-substituted phenyl)-2-bromoacetylene reacted with 1a. No products including desired 3n were obtained, and the starting materials were recovered and unchanged. It should be noted that 3-(bromoethynyl)thiophene and 2-(bromoethynyl)naphthalene as substrates reacted with 1a to give 3o and 3p in 61 and 64% yields, respectively.

Subsequently, the generality of 2H-azirine was also investigated and is summarized in Scheme 3. It is noteworthy that

Scheme 3. Scope of 2H-Azirines^a

"Reaction conditions: 1 (0.40 mmol), 2a (0.20 mmol), PC-I (5.0 mol %), CH $_3$ CN/DCE (V/V = 1:1, 1.0 mL), room temperature, air, 1.5 W blue LED for 24 h. "Bisolated yield." 36 h

excellent group tolerance was observed when a number of substituted 2H-azirines were examined in the cycloaddition reactions. 3-Aryl-2H-azirines attached electron-donating groups (Me, Et, i-Pr and t-Bu) at para-position of the phenyl rings reacted with 2a to provide the corresponding products (4a-d) in good yields. Meanwhile, the reactions of 2H-azirines with a (para-fluoro)phenyl, (para-chloro)phenyl, and (para-bromo)phenyl at 3-position with 2a afforded the desired products (4e-g) in 63-68% yields. Moreover, 3-aryl-2H-azirines bearing a CF_3 or C_6H_5 group on the para-position of benzene ring gave the anticipated products 4h and 4i in 59 and 61% yields, respectively.

Organic Letters Letter

The cycloaddition of **2a** with 3-(*meta*-substituted phenyl)-2*H*-azirines proceeded smoothly under optimal conditions to give products (**4j-l**) in accepted yields. However, an obvious steric effect was observed for the formation of **4m-p** by using 3-(*ortho*-substituted phenyl)-2*H*-azirines as one of the substrates. The reactions of 3-(3,5-Cl₂-phenyl)-2*H*-azirine, 3-(naphthalen-1-yl)-2*H*-azirine, and 3-(naphthalen-2-yl)-2*H*-azirine, as well as 3-(2-Cl-phenyl)-2*H*-azirine and 3-(2-F-phenyl)-2*H*-azirine with **2a** generated the target products (**4m**, and **4o-r**) in satisfactory yields after 36 h. In addition, the cycloaddition of several aryl-substituted 2*H*-azirines with 1-(4-methylphenyl)-2-bromoacetylene under the optimized reaction conditions were examined, and the according products (**4s-x**) were obtained in 57–75% yields.

To gain insight into the reaction mechanism of oxygen participated cycloaddition, several control experiments were conducted. First, addition of TEMPO (1.0 equiv) into the reaction of 1a with 2a suppressed the cycloaddition completely (Scheme S2, SI), indicating that a radical process may be involved in the reaction. Subsequently, when 1a reacted with (iodoethynyl)benzene, (phenylethynyl)copper, and ethynylbenzene under standard reaction conditions, no product 3a was obtained, demonstrating that only C–Br bond can be effectively cleaved under blue LED irradiation (Scheme S2). Moreover, addition of ¹⁸O-labeled water into the model reaction did not give ¹⁸O-3d (Scheme 4). However, when the reaction was

Scheme 4. Selected Control Experiments

performed in $^{18}O_2$ atmosphere for 24 h, ^{18}O -3d was isolated in 75% yield, which was further confirmed by HRMS (Figure S1, SI). These results clearly illustrated that oxygen atom in oxazole 3d comes from O_2 in air, not from H_2O (Scheme 4). In addition, deuterium-labeling study using $[D]_7$ -1a unambiguously showed that the cleavage of C–H bond in the reaction is not a rate-determining step (Scheme 4). It is important to note that EPR spectra did not provide any information for the formation of superoxide radical anion $(O_2^{-\bullet})$ or singlet 1O_2 during the reaction. Inversely, a vinyl peroxyl radical C (Scheme 5) is considered as the key intermediate in the aerobic transformation (Figure S4, SI).

On the basis of the above control experiments and mechanistic studies, a possible pathway for this cyclization is outlined in Scheme 5. Initially, a single-electron oxidation of 2H-azirine 1a ($E^{ox} = +0.764 \text{ V}$) by the excited state of organic catalyst (PC-I)* ($E^{ox} = +2.311 \text{ V}$) generated a radical cation A^{13} and (PC-I)⁻. Then an addition of A to alkynyl bromide a provided intermediate a. The formed a reacted with a0 to afford peroxyl radical a0, followed by a 4-endo alkene cyclization at very fast rate a1 to generate intermediate a2 along with the formation of a3.

Scheme 5. Proposed Reaction Mechanism

radical. Next, the obtained Br radical as an oxidant gained one electron from formed (PC-I)⁻ to reset catalyst PC-I, which proves feasible on the basis of half-peak redox potential of Br[•]/Br⁻ ($E_{1/2}^{\rm red}$ = +0.897 V)¹⁵ and (PC-I)⁻/PC-I ($E_{1/2}^{\rm ox}$ = -0.822 V). The fragmentation of **D** afforded **E**, followed by intermolecular cyclization to generate **F**. Finally, the obtained **F** underwent β -H elimination assisted by Br⁻ to form desired 3a and HBr.

In conclusion, we have developed a novel methodology to build oxazole skeleton using acridinium salt (PC-I, 5.0 mol %) as an organic photocatalyst at room temperature under visible light irradiation. The radical cycloaddition proceeded smoothly to generate oxazoles in moderate to good yields under mild reaction conditions, and which provides an alternative approach to functionalized oxazoles. The initial experiments have been carried out to gain insight into the possible reaction pathway, and additional efforts to gain a better understanding of this transformation are currently underway.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.orglett.6b01696.

Full experimental details and characterization data for all products (PDF)

AUTHOR INFORMATION

Corresponding Authors

*E-mail: hongjili1982@163.com. *E-mail: leiwang88@hotmail.com.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work is financially supported by the National Science Foundation of China (No. 21572078, 21372095, 21402060).

■ REFERENCES

(1) For early reviews on azirines, see: (a) Palacios, F.; Retana, A. N. O.; Marigorta, E. M.; Los Santos, J. M. Eur. J. Org. Chem. 2001, 2401. (b) Khlebnikov, A. F.; Novikov, M. S. Tetrahedron 2013, 69, 3363. (c) Palacios, F.; Retana, A. M. O.; Marigorta, E. M.; Los Santos, J. M. Org. Prep. Proced. Int. 2002, 34, 219.

(2) (a) Huang, C.-Y.; Doyle, A. G. Chem. Rev. **2014**, 114, 8153. (b) Padwa, A. Comprehensive Heterocyclic Chemistry III; Elsevier, Ltd.: Amsterdam, 2008; pp 1–104.

Organic Letters Letter

(3) (a) Singh, B.; Zweig, A.; Gallivan, J. B. J. Am. Chem. Soc. 1972, 94, 1199. (b) Padwa, A.; Smolanoff, J. J. Am. Chem. Soc. 1971, 93, 548.

- (4) Alper, H.; Wollowitz, S. J. Am. Chem. Soc. 1975, 97, 3541.
- (5) Alper, H.; Perera, C. P.; Ahmed, F. R. J. Am. Chem. Soc. **1981**, 103, 1289.
- (6) Jana, S.; Clements, M. D.; Sharp, B. K.; Zheng, N. Org. Lett. 2010, 12, 3736.
- (7) Okamoto, K.; Mashida, A.; Watanabe, M.; Ohe, K. Chem. Commun. **2012**, 48, 3554.
- (8) For selected reviews, see: (a) Candito, D. A.; Lautens, M. Org. Lett. 2010, 12, 3312. (b) Jiang, Y.; Park, C.-M.; Loh, T.-P. Org. Lett. 2014, 16, 3432. (c) Zeng, T.-T.; Xuan, J.; Ding, W.; Wang, K.; Lu, L.-Q.; Xiao, W.-J. Org. Lett. 2015, 17, 4070. (d) Rostovskii, N. V.; Sakharov, P. A.; Novikov, M. S.; Khlebnikov, A. F.; Starova, G. L. Org. Lett. 2015, 17, 4148. (e) Taber, D. F.; Tian, W. J. Am. Chem. Soc. 2006, 128, 1058. (f) Loy, N. S. Y.; Singh, A.; Xu, X.; Park, C.-M. Angew. Chem., Int. Ed. 2013, 52, 2212. (g) Zhu, L.; Yu, Y.; Mao, Z.; Huang, X. Org. Lett. 2015, 17, 30.
- (9) (a) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322. (b) Jin, J.; MacMillan, D. W. C. Nature 2015, 525, 87. (c) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176. (d) Kalyani, D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18566. (e) Sahoo, B.; Li, J.-L.; Glorius, F. Angew. Chem., Int. Ed. 2015, 54, 11577. (f) Nguyen, J. D.; Tucker, J. W.; Konieczynska, M. D.; Stephenson, C. R. J. J. Am. Chem. Soc. 2011, 133, 4160. (g) Miller, D. C.; Choi, G. J.; Orbe, H. S.; Knowles, R. R. J. Am. Chem. Soc. 2015, 137, 13492.
- (10) (a) Romero, N. A.; Nicewicz, D. A. J. Am. Chem. Soc. 2014, 136, 17024. (b) Perkowski, A. J.; You, W.; Nicewicz, D. A. J. Am. Chem. Soc. 2015, 137, 7580. (c) Nguyen, T. M.; Nicewicz, D. A. J. Am. Chem. Soc. 2013, 135, 9588. (d) Grandjean, J.-M. M.; Nicewicz, D. A. Angew. Chem., Int. Ed. 2013, 52, 3967. (e) Nguyen, T. M.; Manohar, N.; Nicewicz, D. A. Angew. Chem., Int. Ed. 2014, 53, 6198. (f) Xuan, J.; Zeng, T.-T.; Feng, Z.-J.; Deng, Q.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J.; Alper, H. Angew. Chem., Int. Ed. 2015, 54, 1625. (g) Xuan, J.; Xia, X.-D; Zeng, T.-T.; Feng, Z.-J.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J. Angew. Chem., Int. Ed. 2014, 53, 5653. (h) Hari, D. P.; Schroll, P.; König, B. J. Am. Chem. Soc. 2012, 134, 2958. (i) Ohkubo, K.; Suga, K.; Morikawa, K.; Fukuzumi, S. J. Am. Chem. Soc. 2003, 125, 12850. (j) Kotani, H.; Ohkubo, K.; Fukuzumi, S. J. Am. Chem. Soc. 2004, 126, 15999. (k) Pitre, S. P.; McTiernan, C. D.; Ismaili, H.; Scaiano, J. C. J. Am. Chem. Soc. 2013, 135, 13286. (1) Kalaitzakis, D.; Kouridaki, A.; Noutsias, D.; Montagnon, T.; Vassilikogiannak is, G. Angew. Chem., Int. Ed. 2015, 54, 6283.
- (11) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski, M. C. Chem. Rev. 2013, 113, 6234 and references cited therein.
- (12) (a) Tan, H.; Li, H.; Ji, W.; Wang, L. Angew. Chem., Int. Ed. 2015, 54, 8374. (b) Xia, D.; Miao, T.; Wang, L. Chem. Asian J. 2015, 10, 1919. (c) Zhou, C.; Li, P.; Zhu, X.; Wang, L. Org. Lett. 2015, 17, 6198. (d) Ji, W.; Tan, H.; Li, P.; Wang, M.; Wang, L. Chem. Commun. 2016, 52, 1462. (13) (a) Nunes, C. M.; Reva, I.; Fausto, R. J. Org. Chem. 2013, 78, 10657. (b) Müller, F.; Mattay, J. Angew. Chem., Int. Ed. Engl. 1991, 30, 1336. (c) Fessner, W.-D.; Sinerius, G. Angew. Chem., Int. Ed. Engl. 1992, 31, 209. (d) Müller, F.; Karwe, A.; Mattay, J. J. Org. Chem. 1992, 57,
- (14) Zhang, C.; Jiao, N. J. Am. Chem. Soc. 2009, 132, 28.
- (15) (a) Harrison, J. A.; Hermijanto, S. D. J. Electroanal. Chem. Interfacial Electrochem. 1987, 225, 159. (b) Janssen, L. J. J.; Hoogland, J. G. Electrochim. Acta 1970, 15, 1677.